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Abstract. We present in this paper a simplification of the dune model proposed by Sauermann et al. which
keeps the basic mechanisms but allows analytical and parametric studies. Two kinds of purely propagative
two dimensional solutions are exhibited: dunes and domes. The latter, by contrast to the former, do not
present a slip face. Their shape and velocity can be predicted as a function of their size. We recover that
dune profiles are not scale invariant (small dunes are flatter than the large ones), and that the inverse of
the velocity grows almost linearly with the dune size. We furthermore get the existence of a critical mass
below which no dune solution exists. It rises the problem of dune nucleation: how can dunes appear if any
bump below this minimal mass gets eroded and disappears? The linear stability analysis of a flat sand bed
shows that it is unstable at large wavelengths: dune can in fact nucleate from a small sand mass if the

proto-dune is sufficiently long.

PACS. 45.70.-n Granular systems — 47.54.4r Pattern selection; pattern formation

1 Introduction

The beauty of the crescentic barchan dunes have recently
attracted the interest of physicists for a better understand-
ing and modelling of sand transport, as well as ripples and
dunes formation and propagation. E. Guyon had this witty
remark: ‘barchans are our drosophila’, meaning that be-
yond the scientific and fundamental works on these dunes,
we all keep in mind that such studies may lead to poten-
tial applications in the fight of saharan countries against
sand invasion. One of the first reference work in the field
is certainly the famous book of Bagnold which dates back
from 1941 [1]. Since then, a great effort of measurement
and modelling has been done which we have reviewed in
details in the first part of these twin papers.

Our aim here is to discuss and model the selection of
two-dimensional dune shape and velocity. For that pur-
pose, we will simplify the model proposed by Sauermann
et al. [2-5]. We will show that although making rather
severe approximations, we are able to recover their main
results, in particular that dune profiles are not scale in-
variant, and that the inverse of the velocity grows almost
linearly with the dune size. Besides, analytical expressions
of dome and dune profiles can be obtained, but whose co-
efficients have to be numerically computed.
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We furthermore get the existence of a critical size be-
low which no dune solution exists. This minimal size di-
rectly rises the problem of dune nucleation: how can a
dune appear if any bump below a critical mass is eroded
and disappears? We give here the linear stability analy-
sis of a flat sand bed and show that it is unconditionally
unstable towards large wavelengths perturbations. This
means that a dune can nucleate from a very small sand
mass, if sufficiently long.

The paper is organized as follows. Section 2 is devoted
to the equations of the model. The linear stability of a
uniform sand sheet is treated in Section 3. In Section 4.1
we simplify further the equations and show what is the
general shape of the purely propagative solutions of the
model. The specific case of domes and ‘actual’ dunes are
discussed in Sections 4.2 and 4.3 respectively. At last, we
conclude with a discussion of the relevance of these re-
sults, and the possible extension of the model to three-
dimensional situations and to dynamical studies.

2 Basic equations
2.1 Continuity and charge equations

We wish to give a description of the shape and evolution
of two-dimensional dunes in terms of two fields: the profile
h(z,t) and the volumic sand flux ¢(x,t) which is the vol-
ume of sand transported through an infinite vertical line
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Fig. 1. The wind cannot transport more than a given sand
flux, called the saturated flux, which depends only on the wind
strength. When the wind is blowing on a patch of sand, the flux
gets saturated after a typical length ls4+. This saturation length
lsat, which turns out to be almost independent of the wind
shear velocity u. — see Part 1 — is the only relevant lengthscale
in the problem.

per unit time. x denotes the horizontal coordinate and ¢ is
the time. We are going to write a set of three equations for
these quantities in order to include into the model (i) the
mass conservation, (ii) the progressive saturation of sand
transport and (iii) the feedback of the topography on the
sand erosion/deposition processes. Although we shall re-
strict ourselves in this paper to two-dimensional situations
corresponding to transverse dunes (invariant in the direc-
tion perpendicular to the wind), our ultimate goal is of
course to be able to describe three dimensional dunes and
barchans in particular.

Because barchans migrating in dune fields organize
themselves like gooses or ducks during their migration
flights, we named this class of models the Cg modelling.
This denomination includes the approach of Sauermann
et al. as well as the different variations and simplifications
we derive in this paper from their work. At this stage of
the modelling, we are however far from being able to take
into account such ‘interactions’ between dunes which are
necessary to explain the Cg spatial organisation, and we
shall focus on isolated objects only.

A simple balance calculation shows that the erosion
rate —0;h is directly related to the divergence of the flux q.
This gives the common continuity equation:

Oth + 0;q = 0. (1)

The saturation effect of the sand transport has been
already discussed in the first part of these twin papers.
Consider a patch of sand on which the wind is blow-
ing — see Figure 1. The flux of transported sand ¢ first
increases and, because of the feedback of the grains on
the wind velocity profile, get saturated after a typical
length ls4¢. In the first part of the paper, we showed that
lsat = &d psand/Pair (d is the grain diameter, p the den-
sities and ¢ a non dimensional prefactor), i.e. is almost
independent of the wind shear velocity u, — slow logarith-
mic dependencies hidden in £ only. This phenomenon has
been reported and studied by several authors, e.g. [1,6].
The real shape of ¢(z) is certainly more complicated than
the one drawn in Figure 1. In particular, oscillating or
overshooting features were reported in [1] when ¢ reaches
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its asymptote. However, what is important for our pur-
pose is only that a saturated value gsq; is reached after
a length ls,;. This space lag is satisfactorily described by
the following equation:

Opq = L. 2)
sat

This charge equation can be seen as a simplification
of that proposed by Sauermann et al. in their continuum
saltation model [3]. An important remark is that this equa-
tion is valid only if some grains are available on the sand
bed. On a firm soil indeed, the flux cannot increase to be-
come saturated. As suggested by Peer and Hakim [7], the
right hand side of equation (2) must be therefore multi-
plied by some matching function which quickly tends to
zero when the altitude h above the firm soil is decreased
below, say, d the grain diameter, and which is equal to
unity above this value. Then, the equation (2) becomes
non linear but no boundary conditions have to be speci-
fied at the edges of the sand covered region. For example,
if the matching function tends to zero like A, the dune will
always keep a thin sand sheet at its back. But if it varies
as Vh, the dune will have a finite extension and will join
the firm soil with an horizontal tangent. We shall ignore at
present these subtleties but keep them in mind to invoke
them later when necessary.

Another important remark is that the time scale on
which the dune profile h evolves is incomparably larger
than that of the sand flux ¢. We then assume that ¢ adapts
its profile instantaneously according to equation (2) and
makes h change slowly through equation (1). Therefore
any term 0qq is irrelevant in this modelling.

2.2 Relationship between dune shape and sand flux

The saturated flux gsq+ is uniform for a flat sand bed only.
To the first order, the saturated flux gs: is a function
of the local shear stress 7 = pg;-u? which itself depends
— non locally — on the topography: basically, bumps and
upwind slopes get more eroded than dips and downwind
faces. A classical relationship between the saturated flux
@sat and the shear velocity u, that can be recovered with
the scaling arguments of the Part 1 of the paper is:

3
Pair %

Psand 9

Gsat X (3)
In principle, such a relationship is valid far from the veloc-
ity threshold wup, under which no sand can be transported
by the wind, i.e. gsqt = 0 for u, < usp,-. Refined formulas
can be obtained which essentially smooth the step from 0
to the previous asymptotic expression such as that ob-
tained in Part 1:
Pair Usx 2 2
Qsat X —— — (ui —u .
o Psand 9 ( thr)

(4)

In the whole range —up, < Us < Uthy, ¢sqt 1S nUll SO that
in practice, ¢sq¢ cannot become negative on a dune. This
condition will be used in Section 4.2.



B. Andreotti et al.: Selection of dune shapes and velocities. Part 2

To close the equations, we have to explicit the spa-
tial variations of the turbulent wind velocity due to the
dune profile. The simplest model which verifies the basic
requirements (see Part 1) is certainly the perturbative cal-
culation by Jackson and Hunt [8,9]. Neglecting logarith-
mic scale dependencies, Kroy et al. [4,5] have extracted
the main features of their work by expressing the shear
velocity as:
ui (@)

*

Uz

*

1+A/i—§ Ozh(x — x) + BO:h(z), (5)

where U, is the shear velocity exerted on a flat bed. First,
it must be noted that the convolution integral acts on
Oy h roughly like a derivative, leading to a term which en-
codes curvature effects. But this curvature is dimension-
less and thus does not depend on the dune size — in other
words, this term can be seen as a curvature rescaled by
the dune size. It reflects the observation that the wind
velocity increases on bumps (negative curvature) and de-
creases on hollows (positive curvature). Second, it is a non
local term, meaning that the shear velocity depends on the
whole shape of the dune. Of course sharp variations of the
dune profile will also have a strong local effect. At last,
the second (B) term simply takes into account slope ef-
fects: positive slopes are more eroded than negative ones.
Again, this term does not introduce any new lengthscale.
Expression (5) can be used to close up the set of equa-
tions as was done by Kroy et al. in [4,5] who used besides
a more sophisticated — and non-linear — charge equation
than (2). It is useful to simplify further the equation link-
ing gsqt to h without loosing too much physics, in order to
let more analytical developments. The linear expansion of
the expression (5) rewritten in terms of gsq¢ o u? gives:

Gsat (I)
Qsat

and is fully justified by the approximations under which
equation (5) is valid. By definition, Qsut = ¢sat(Us) is the
saturated flux on a flat sand bed submitted to a shear
velocity Us.

As discussed in Part 1, A and B are not strictly con-
stant but increase with the logarithm of the ratio of the
dune size D to the roughness of the sand surface zy. For
D varying between 20 m and 200 m and a roughness of
order of the grain size, In(D/zp) does not change by more
than 20%. A reasonable approximation is thus to take con-
stant values for the coefficients A and B. Moreover, the
aspect ratio of actual dunes (around 0.1 for the height to
length ratio) is too large to justify completely the approx-
imations [4,5,8,9] necessary to derive expression (6). We
nonetheless think that it is sufficient in the present state,
provided that A and B become effective parameters. In
the following, we will use A = 6 and B = 4 which are, in
view of the results, reasonable values of the parameters A
and B.

Furthermore, we shall use the saturation length s,
and flux Qsq¢ to make our variables dimensionless. Thus,
for a given wind shear velocity, all relevant scales of the

_ 3 dx 3
=1+ §A a Ozh(z — x) + EB dzh(z), (6)
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Fig. 2. The sand transport increases on the back of the dune
which is thus eroded. The sand is deposed at the brink and is
redistributed along the slip face by avalanches. It can be as-
sumed that the slip face is always at the repose angle ¢. At the
brink, the turbulent boundary layer separates from the dune,
enclosing a recirculation bubble. In the absence of better ap-
proximations, the separation streamline is assumed to extend
the dune profile and to reattach the ground smoothly. By def-
inition, L is the distance between the foot of the dune (z = 0)
and the brink x = L, H is the height of the highest point of the
dune (crest) and B is the dune height at the brink. H and B
may coincide or not.

problem are fixed. For instance, Qgqut/lsqr is the veloc-
ity scale, I2,,/Qsat the time scale, Q4 /12,, the frequency
scale, etc. Note that the strength of the wind is completely
absorbed in these rescalings.

2.3 The recirculation bubble

It is a common field observation (see Part 1) that the wind
streamlines on a dune follow exactly the shape of its back
profile but separate at the point where the avalanche slip
face begins — the brink — and reattach further downwind,
see Figure 2. This phenomenon creates an eddy recircula-
tion in the ‘shadow’ of the dune, where the wind is much
less strong than anywhere else. As a consequence, all the
sand eroded on the back is deposited around the top of
the slip face which avalanches when the slope becomes
too steep. As explained in the first part of these twin pa-
pers, it is fortunate that an accurate description of these
avalanches is not necessary due to the fact that they do
not have any feedback on the back profile of the dune:
they simply relax the slope to its equilibrium value tan .
We will use the value ¢ = 30° in the following, as usually
measured for desert sand.

The simplest way to model the feedback of the recir-
culation bubble on the whole dune has been proposed by
Zeman and Jensen [12] and used more recently by Kroy
et al. [4,5]. The idea is to build an envelope of the dune
which prolongs the dune profile by the separation stream-
line — see Figure 2. To the first order, the wind on the back
of the dune is the same as that would have been obtained
if the envelope was solid. For example, the convolution in-
tegral in equation (5) used to calculate the shear stress on
the soil should be applied not to the dune profile only, but
to the dune + bubble envelope.

Following Kroy et al. [4,5], we are going to build a very
simple — yet empirical — separation streamline hy(z), writ-
ten as a polynomial of 3rd degree. The conditions under
which the turbulent boundary layer separates from the
dune cannot be easily expressed and even are not clear at
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all. It is a common observation that the flow separation
occurs on the downwind face of a bump if the downslope
is sufficiently large. Thus, the simplest empirical criterion
is that the slope be locally steeper than some threshold
value —pup. In the sequel, we shall use the typical value
My = 0.25.

Another basic requirement is that the junction at the
brink (z = L) and at the reattachment point with the soil
(x = L+ R) be smooth (see Fig. 2). This already gives
four relationships: hy(L) = h(L) = B, hy,(L) = h/(L) = p,
ho(L+ R) = h(L + R) and hy(L + R) = K'(L+ R). To
be self consistent, the separation streamline should be
nowhere steeper than the critical slope —pu;. As a con-
sequence, the recirculation bubble nucleates at null size,
the first time the dune slope becomes steeper than —puy.
It is natural to impose that the steepest slope along the
separation streamline — at the inflexion point x}, defined
by hy (z,) = 0 — be strictly equal to —pu:

hy () = —po. (7)

This last condition selects the length R of the recirculation
bubble.

In most of the cases, the boundary layer reattaches
on the flat soil downwind the dune (h(L + R) = 0 and
h'(L 4+ R) = 0) and the separation streamline becomes:

hy() = (1 e ]_%L)Q <B+ (bR + 23)%) C(®)

Using the condition (7), the length R of the recirculation
bubble can be expressed as:

R m—p— m(w +p) (9)
3B p(p — 3pip)

R scales on the height B at the brink but depends on
the slope p: as expected, the recirculation bubble is scale
invariant but of course depends on the shape of the dune.

3 Stability of a flat sand bed

Before going further in the modelling of dune shape and
propagation, we wish to investigate the problem of dune
initiation. Indeed, as reported in the first part, there
are two striking field observations. First, no persistent
barchan dunes exist smaller than say, 1 m high, 20 m
large and 20 m long. Second, any small conical sandpile
blown by the wind disappears even when a sand supply is
provided. Then, how can barchan dunes appear?

To investigate this problem, we have integrated numer-
ically equations (1, 2, 6) for two initial conditions. First, a
small triangular sandpile at the repose angle is prepared
on the firm soil (Fig. 3). It can be seen that it is rapidly
eroded and disappears, as observed in the field and in wind
tunnel experiments — see Part 1. Second, we look at the
evolution of a thin sand sheet (Fig. 4) disturbed by a flat
bump. This initial condition mimics a sand beach on which
sand is deposed by water. It can be seen that the bump
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Fig. 3. Time evolution of a small triangular sandpile on the
firm soil, initially 1.3 lsqs: high and at the repose angle. The
pile is quickly eroded and after some time, all the amount of
sand available at ¢ = 0 (grey filled region) is swept out. The
field observation that such a small sandpile disappears is thus
recovered in the model. The graph results from the numerical
integration of equations (1, 2, 6) with A = 6 and B = 4. h(x,t)
and x are in units of ls4:. The time between two profiles is 0.1
in units of 12,,/Qsas. For legibility, the profiles are translated
vertically from time to time.

propagates downwind and induces a strong erosion of the
sand bed in front of it. A second bump nucleates from the
initial perturbation which itself induces a strong erosion in
front of it, and so on. After some time, a series of growing
oscillations is generated. The amplification of this phe-
nomenon stops when the oscillations eventually reach the
firm soil from which no sand can be eroded, and/or when
recirculation bubbles appear. As a conclusion, depending
on their spatial extension, small sand bumps either disap-
pear or grow and initiate dunes.

It is then instructive to make the linear stability anal-
ysis of a flat sand bed. Let us consider an infinite uniform
sand bed blown by a uniform wind. The sand flux is every-
where saturated: ¢ = 1 (in units of Q4q). To investigate
its stability, we can consider, without loss of generality a
small perturbation of the form:

h(l’,t) —_ Heatfithrika:,
q(m t) =14+ Qeatfiwt+ikz

(10)
(11)
where (Q and H are related one to the other by the con-

servation of matter, (iw — o0)H = ikQ. From the rela-
tion (6), we get the following expression for the saturated
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h(x,t)
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Fig. 4. Time evolution of a flat sand sheet of height l5q: above
the firm soil disturbed by a small hump. The perturbation
propagates downwind and induces the growth of oscillations
downwind it. The hollow created in front of the initial bump
soon reaches the firm soil: the initial sand bed (grey filled re-
gion) divides into an array of isolated dunes. Except the time
between two profiles which is 0.5, the details are the same than
for Figure 3.

flux: gsqr = 143/2(A|k|+ Bik)h. Once replaced in the sat-
uration equation, it gives: (14 1k)Q = 3/2 (Alk| + Bik)H.
Combining these equations we finally obtain:

_ 3K3(B — Alk)
TR (12
_ 3K[KI(A + Blk])

Y TR (13)

Note that a more complicated relation between gsq+ and u.
than (3) would only affect the prefactor, i.e. the time scale,
in this calculation.

As shown in Figure 5 (top), the growth rate o is pos-
itive for small wavenumbers (k < B/A) and negative for
large wavenumbers (k > B/A). A flat sand bed thus ex-
hibits a large wavelength instability which can explain the
initiation of dunes. But it is stable towards small wave-
length disturbances, so that a small sandpile on a firm
soil is quickly eroded.

For wavelengths much larger than the saturation
length the previous equations simplify in w ~ 3/2 Ak?
and o ~ 3/2 Bk?. The A and B terms in equations (5)
and (6) thus corresponds to the mechanisms responsible
respectively for the propagation and for the growth of dis-
turbance. Consider a symmetric bump (like a bell curve).
Due to the curvature dependence of the wind (A term),

345

0.5—

{ { I
0 0.2 0.4 0.6

-0.5 —

T

I

I

I

-1.0 |
I

I

-1.5 — |

unstable stable
-2.0 \

Fig. 5. Results of the linear stability of a uniform sand bed
blown by the wind, for A = 6 and B = 4. Top: growth
rate o, rescaled by Qsat/l2.:, as a function of the disturbance
wave number k, rescaled by 1/lsq:. The sand bed exhibits a
large wavelength instability. Bottom: group velocity ¢ of distur-
bances, rescaled by Qsat/lsat, as a function of the disturbance
wave number k, rescaled again by 1/lsq¢. For small wave num-
bers, the velocity ¢ increases linearly with k and thus decreases
as the inverse of the wavelength.

the flux increases on the upwind face of the hump and
decreases on the downwind face. The upwind face is thus
eroded and the sand is deposed progressively on the down-
wind face. As a consequence, the curvature dependence of
the wind is responsible for the propagation of the hump.
Now, due to the dependence of the wind on the slope
(B term), the flux is slightly larger upwind the bump max-
imum than downwind. In the frame of reference of the
bump, there is thus a net flux towards the maximum of
the bump: the hump grows. Finally the lag before satura-
tion introduces a cut-off for lengthscales smaller than the
saturation length: a bump shorter than ls,; gets eroded
since the flux is not saturated.

The fastest growing mode — that which maximises o —
is obtained for 3k + k* = 2B/A. Neglecting the k® term,
we obtain a still good approximation of the most unstable
wavelength: A = 27 /k ~ 3nls,+ A/B. X is thus of the order
of ten times the saturation length. For A = 6, B = 4
and lsq; ~ 9 m we get a wavelength of 125 m which is
reasonable compared to what is observed on transverse
dune fields in deserts. Under water l4,; rather scales on
the grain size and we have ls5; ~ 1 cm which gives 14 cm,
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again a good estimation of what has been measured by
Betat et al. [10] or Andersen et al. [11] for example.

Finally, it can be seen from equation (13) that distur-
bances propagate downwind. We can compute the group
velocity of these surface waves:

oo dw 3[A|k| + BE2(3 + k?)]
==

2(1 + k2)2

~ (14)

For small wavenumbers k, the group velocity ¢ increases
linearly with k (Fig. 5 (bottom)). This means that for
asymptotically large wavelengths A, the propagation speed
scales as Qsqt/A. We thus recover in the limit of large
bumps, the scaling proposed by Bagnold for dunes. We
also see that the velocity deviates significantly from this
law, when the wavelength becomes comparable to the sat-
uration length ls,;. This is also the case for actual dunes
— see Part 1.

4 Dunes as solitary waves
4.1 A simple 2d modelling

The expression (6) can be easily used only if the analysis
in Fourier space is possible (like for the linear stability
analysis). But we wish now to compute the shape and
velocity of purely propagative dunes which are localised
in space. For simplicity, we will thus replace the convolu-
tion expression by a simpler anzats. Since it is a ‘scaleless
and non-local curvature’, we can formally replace it by
—DO0yzh, where D is the dune length. We then end up
with the following set of linear equations:

b+ uq = 0, (15)
azq = Gsat — 4, (16)
Qsat = 1 — aDOyzh + B0 h. (17)

Again, a and g should be thought of as phenomenological
parameters of order unity reflecting the dependence of the
flux on the curvature and the slope respectively. Let us
recall that they respectively induce the propagation of a
bump (« term) and its growth (5 term). Due to the lag
before saturation of the sand transport, the o term has
also a stabilizing role at small lengthscales. The rescalings
h «— ah and t « at (with ¢ and = unchanged) shows that
only the ratio 8/« is actually important. At last, as we
already mentioned, the charge equation (16) is valid only
if there is some sand to be eroded h > 0. Note also that
the expression (17) of the saturated flux is valid only if it
is positive: gsq¢ should be taken as null if the expression
is negative.

The boundary conditions are implicitly determined
when the expression (6) of gsq¢ — that which involves the
convolution — is used. Indeed, the wind velocity field and
thus the saturated flux do not feel the difference between
the firm soil and the dune. The ‘free’ surface profile should
thus be considered as a whole. Figure 6 shows the evolu-
tion of the upwind edge of a dune. The profile quickly be-
comes flat and only then, the dune starts propagating. The
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Fig. 6. Time evolution of the foot of the dune (upwind)
for an initial sand pile making a finite angle with the firm
soil. The profile first flattens and the propagation of the up-
wind edge only starts when the slope is horizontal. So, equa-
tions (6, 15, 16) select dynamically a smooth join between the
soil and the dune. The displayed profiles corresponds from left
to right to the times ¢t = 0, 0.25, 0.5, 0.75 and 1.5.

same argument is valid for the simplified equation (17). If
the slope h’ was not continuous at the dune edge, in some
sense, b’ would be infinite. Then, from equation (17), the
saturated flux would formally tend to —oo over a region
around this edge, i.e. would be forced to be null because
it cannot be negative. Thus in this region, only sand de-
position is permitted. This means that a discontinuity in
the slope at the dune edge, immediately reacts to prevent
the motion of this boundary point, which starts moving
again only when the profile becomes flat. There is thus a
dynamical selection of the boundary condition: the pro-
file h as well as its slope h’ should vanish at the upwind
boundary of the dune.

In the following, we are going to look for solitary waves
i.e. functions of the type h(x — ct) and g(z — ct). We now
describe everything in the frame of reference of the dune
and rename x as the new space coordinate. Under this
steady state hypothesis, the continuity equation (15) can
be easily integrated and gives:

q = qo + ch. (18)

qo is the sand supply i.e. the incoming sand flux at the
point x = 0 at which the dune starts (h = 0). Upwind
the dune (z < 0), no grains are available on the ground:
h =0 and ¢ = qo everywhere. For the dune itself (x > 0),
we use the relation (18) between ¢ and h in the charge
equation (16) together with gs.+ given by expression (17)
and we get an ordinary differential equation for the dune
profile h(x):

1—aDh" + (8 —c)h/ —ch—qy =0, (19)

where h' and h” denote the first and second derivatives
of the dune profile. Under the two boundary conditions
h(0) = 0 and A/(0) = 0, the solution of equation (19) is

1 —
h(z) = 0 {1 + (% sin(kzx) — cos(kx)) e”] . (20)
where the coefficients s and k are given by
_ f-c _ 2
$= 55 = 52D 4caD — (B —¢)?. (21)
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Fig. 7. Longitudinal profile of a barchan dune at Negrita
beach, southern Morocco. Black and white dots correspond
to independent measurements of the same dune. The solid line
correspond to the best fit by a function of the form (20).

Having used the upwind boundary conditions only, the
solutions are still parametrized by the dune length D and
its velocity ¢ which must be fixed by the downwind con-
ditions. Two kinds of right boundary conditions will be
considered, leading to so-called ‘dome dunes’, i.e. without
avalanche slip face, or ‘actual’ ones for which the ‘recircu-
lation bubble’ will be introduced.

Figure 7 shows the comparison between the central
longitudinal profile of an actual barchan and the theoret-
ical form (20) which is parametrised by k, s and c. It can
be seen that the shape of the dune as well as the upwind
boundary conditions are well captured by the model.

4.2 Domes

In this section, we look for domes, which by definition do
not show any slip face. Let us first exhibit a particular
solution. For the value of the propagation speed ¢ = 3,
s vanishes so that the solution (20) reduces to

h(z) = 1 —6% (1 - cos(kz))

with k = /3/aD. The height h(z) vanishes at the posi-
tion & = 2m/k so that the length D of the dome is selected
as D = 472a/3. Since the ‘natural’ downwind boundary
conditions h/(D) = 0 is verified, it is a solution whatever
the sand supply qo.

In fact, two further conditions should be fulfilled.
First, to insure the self-consistency of the solution, the
local slope of the dome should be nowhere steeper than
—p, value above which, as assumed above, the turbulent
boundary layer separates from the dune profile, leading to
a slip face. The steepest slope of the dome solution (22)
is given by (qo — 1)/27ma, so that gy must be larger than
1 — 2mauy. Second, the expression (17) of the saturated
flux gsq¢ is valid only when it remains positive everywhere.
As a matter of fact, there is a minimum value of gy below
which gs,: takes negative values and makes this solution
inconsistent. It is easy to show that this lower bound for

qo reads ¢ =1— (1 + (5/2#0[)2)71/2. With the values of
the parameters a, 3 and py, that we chose, the last of these
two conditions is the more restrictive for the solution (22).

(22)

horizontal position x

Fig. 8. Shape of the dome solution for different values of the
sand flux qo, for « = 1 and 8 = 4. Note the asymmetry up-
wind/downwind of the low flux dome. For clarity the scale of
the vertical axis is much larger than that of the horizontal one.

For a sand supply ¢ smaller than ¢, the dome solu-
tion is slightly more complicated and has a velocity ¢ < (.
It presents a small region where the saturated flux is null
which corresponds physically to a zone where the wind
is below the threshold of motion of the grains. The de-
tailed derivation of this low flux dome solution is given in
appendix. Qur purpose is rather to give here their main
properties, only. The shape difference between high and
low flux domes is shown in Figure 8.

For each sand supply qo, the mass of the corresponding
dome can be computed as:

D
M:/ dz h(x). (23)
0

For gy > ¢} — and ¢ = ( — this mass can be simply ex-
pressed as M = 4n?a(l — qo)/B%. For qo < ¢ it has to
be computed numerically (see Appendix). The resulting
curve M(qo) is shown in Figure 9. The most important
point is that the mass is a decreasing function of the flux.
Consider a dome propagating in its steady state under
a flux qg. Suppose that its mass slightly increases. The
flux of sand which leaves the dome gets smaller than gg.
As a consequence, the dome grows. In the same way, if
the mass slightly decreases, the output flux gets larger
than ¢g so that the mass further decreases. The dome so-
lution is thus an unstable steady state: domes may either
quickly disappear or reach the point where their slope is
steep enough to generate a recirculation bubble and cre-
ate an avalanche slip face to become an actual dune. Note
however that the domes may be stabilised either by the
interaction with other structures or by the use of peri-
odic boundary conditions, for which the output and input
fluxes are coupled [10].

Among the interesting properties of domes, their prop-
agation speed ¢, shown in the inset of Figure 9, is inde-
pendent of the dune size for gy > ¢f (small masses) but
decreases with it for go < ¢ (large domes). More precisely,
we find in this last case that the inverse of the velocity 1/c¢
grows almost linearly with the size M'/? (or the length D).

We have shown in the Section 3 that a too small sand-
pile is inexorably eroded by the wind. The domes, which
are unstable steady solutions, can thus be interpreted in
the context of dunes nucleation: for a given flux ¢o the
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Fig. 9. The main graph shows the mass of a dome selected by
an incident flux go. This function is a straight line for go > ¢g
which corresponds to the ¢ = (8 solutions. The solutions for
qo < g are cut off at go = ¢§ where the slope at z = L is equal
to the threshold —pu; (big dot). The important point is that
this curve M(qo) is a decreasing function, which make these
domes unstable. In the inset, the inverse of the velocity 1/c is
plotted against a typical size M'/? of the dome. It is strictly
constant for M < M(qp) and then almost straight up to the
cut-off value of M.

dome corresponds to the minimal disturbance needed to
create a dune. We will see in the conclusion that the dome
solutions may also play an important role when extending
the present model to three dimensional situations.

4.3 Dunes

Dunes are stabilised by the presence of the slip face and
the recirculation bubble, contrarily to domes. Because no
grains can escape from the slip face, the net out flux
and thus gg are null. Note that this is particular to two-
dimensional situations that we are focused on: three di-
mensional barchan dunes loose sand from their horns. In
our approach, the effect of the recirculation bubble on the
wind is simply to modify the total length of the dune D
which becomes the dune length L plus the bubble length
R: D = L+ R, as shown in Figure 2. The importance
of the recirculation bubble becomes very clear: because it
makes the apparent length of the dune larger, it increases
the erosion at the top of the dune, due to the curvature
effect.

As for the upwind foot of the dune, the boundary con-
dition at the brink is determined dynamically. Consider
first the expression (6) of the saturated flux. In the way
the recirculation bubble is modelled, the convolution term
should be computed on the profile A composed by the
soil, plus the dune surface, plus the separation streamline
(Fig. 2). The brink boundary condition is thus determined
by the assumption that the transition — for the wind and
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Table 1. Mass, velocity and height of the smallest dune so-
lution compared to that of the largest dome — for both, the
steepest slope is equal to —up. Consistently, these data are
pretty close to each other. These numerical values have been
computed with a =1, § =4 and up = 0.25.

M c H
3.65 3.19 0.71
6.55 2.78 0.78

Smallest dune
Largest dome

thus the saturation flux — between the dune and the sep-
aration streamline is smooth. Therefore, the curvature at
x = L must also be continuous, as observed when inte-
grating numerically equations (6, 15, 16). Assuming that
the boundary layer reattaches on the flat soil downwind
the dune equation (8), it gives:

_6B/R+4p
R

We have checked that other choices for the parametriz-
ing of the separation streamline do not change the qual-
itative conclusions presented below. In a general way,
the recirculation bubble conditions can be expressed as
R/B = fi(p) and h"(L)B = fa(p), where the functions
f1 and f> encode the particular choice of the streamline
separation profile hy.

Using the boundary conditions together with the ex-
plicit expression of the dune profile (20), one obtains three
relations linking together the four parameters ¢, L, R
and B. Instead of plotting, say, the three first with re-
spect to the last one, we rather chose to express, as we
did for the domes in the previous section, all of them as
functions of the total mass M of the dune:

L BZ
M = .
/deh(x)—i— Stan g

W(L) = hy(L) = (24)

(25)

We then get a continuous set of dune solutions, from very
large values of the mass, down to some cut-off value M,
below which the turbulent boundary layer does not sepa-
rate from the dune any more. With the criterion previously
defined, this cut-off corresponds to the dune for which the
maximum slope — at the inflexion point — is equal to the
critical slope —up and is achieved at the brink. In Table 1,
mass, velocity and height of the smallest dune solution
are compared to that of the largest dome — for both, the
steepest slope is equal to — . Consistently, these data are
pretty close to each other.

Let us fix a value of the mass of sand M available to
construct a dune. As for the domes, even for the simple
choice of the recirculation bubble profile (8), a numeri-
cal resolution is required at this point to get the corre-
sponding values of the parameters ¢, L, R and B. Three
examples of such solutions are plotted in Figure 10. As
evidenced in Figure 11, when rescaled by a typical dimen-
sion of the dune — here the square root of the mass —, the
different profiles do not collapse on a single curve. In par-
ticular the slope at the brink p = h/(L) varies with respect
to M, and even changes its sign for this choice of the pa-
rameters «, 3 and up. We get p < 0 for the smallest dune,
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Fig. 11. Rescaled profiles of dunes of different sizes. The data
have been computed with a = 1, 8 = 4 and pup = 0.25. Lengths
have been rescaled by the square roots of the masses of the
dunes. These profiles are not scale invariant: as shown in the
inset, the slope p just before the brink is negative for small
dunes and positive for large ones, such that depending on the
dune size, the crest does or does not coincide with the brink.
The four stars represent the four dune profiles. The smallest
one (M = 3.55) coincides with the critical size (big dot).

while p > 0 for the largest one. The inset of Figure 11 as
well as the curves of Figures 12 and 13 show the dune and
bubble features (lengths, slope, aspect ratios and velocity)
as a function of the mass of the dune M. The results are
remarkably simple: as actual dunes, the lengths L, R, H
and B are almost straight lines as a function of the dune
size M'/2. Similarly, 1/c ~ aM'/? + b with a very good
precision. At last, it must be noted that the dune and bub-
ble aspect ratios are not constant: large dunes are more
compact with a proportionally larger bubble than small
ones.

Let us complete these results by a parametric study of
the minimal dune heights H. and B, and the dune slope

349

—
60 —— dune length L
o [ — - bubble length R
S 401 —
; =
20 ]
| (a)
0 "
9 —— height at crest H |
@ | — - height at brink B . ,
56T |
E v
3l 051 [ |
L (b) 01 2 3 4
0 ! .
12 F

—— dune aspect ratio L/H |
— - bubble aspect ratio R/k

= =

aspect ratios
~
T
1

0 5 10 15 20
dune size M’

Fig. 12. Scaling of the lengths L, R (a) and H, B (b) with the
dune size M/?. As a first approximation, these plots are al-
most straight lines. They are cut off at a critical mass (big dot)
corresponding to a dune for which the steepest slope is equal to
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Fig. 13. Propagation velocity ¢ of the dune as a function of
its height H. As shown in the inset, with a very good preci-
sion, 1/c ~ aM /2 4+ b down to some cut-off value. The dashed
line and dashed circle correspond to the dome solution (see
Fig. 9). These data have been computed with a = 1, 8 =4
and pp = 0.25.
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at the brink of asymptotically large dunes (M — o0). The
parameter « is kept to unity, but G has been varied be-
tween 2 and 6, and pp from 0.2 to 0.4. Figure 14 shows
that the corresponding variations of H. and B. are not
very strong. Similarly, the aspect ratio of very large dunes
is always of the same order of magnitude. The most in-
teresting fact is perhaps that for small values of 3, or for
large values of pup, the slope at the brink of very large
dunes could have remained negative — see Figure 15. In
that case, the brink and the crest are always distinct, even
for asymptotically large dunes.

One can understand intuitively the variations of H.,
B and p with 8 and py. Increasing [ gives more strength
to the destabilizing process, which lets small dunes appear
at lower critical scale (smaller H. and B..) and makes large
dunes more bumpy (larger p). If 1 gets larger, the mini-
mal allowed dune can be smaller (H, decreases with ),
but with a corresponding larger brink height B.. On large
dunes, steep bubbles impose a negative slope at the brink.

5 Conclusion

We have shown in this paper how, inspired from the work
of Sauermann et al., one can build a simpler two dimen-
sional model for the formation and the propagation of
dunes. This modelling is based on two main variables: the
dune profile A and the volumic sand flux ¢ and includes
three effects: (i) the mass conservation, (ii) the space lag
over a length I, for the sand flux to become saturated
at some value gsqr, and (iii) the feedback of the profile on
the saturated flux. In this third phenomenological equa-
tion, erosion and deposition processes are the result of
the competition between two antagonist mechanisms: a
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brink p with the parameters 3 and p. To plot theses curves,
we took o = 1. Besides, the solid line has been obtained with
wy = 0.25, and the dashed one with § = 4. Interestingly, p
remains negative for small 8 or large .

stabilizing non local curvature term («) and a destabi-
lizing slope one () which breaks the upwind-downwind
symmetry.

Two kinds of solutions have been found: so-called
‘domes’ which do not show any avalanche slip face, and
‘dunes’ for which a downwind recirculation bubble has
been introduced. We were able to predict an analytical
form for their propagative profiles, but whose coefficients
have to be computed numerically.

The results of the model resemble very much field ob-
servations. We found for example that, due to this length
scale lsq¢, the dune profiles are not scale invariant: small
dunes are flatter than large ones. Another point is that
the inverse of the propagative velocity c is, to a very good
precision, almost linear with the size of the dune. This is
consistent with Bagnold’s argument that ¢ ~ ¢44:/H for a
dune of height H. In fact, this relation overestimates the
velocity of small dunes for which the sand flux may not
be already saturated at the crest and also because, com-
pared to large dunes, the value of gs4¢ is reduced due to a
smaller curvature.

An important point discussed all through the paper
was the issue of the boundary conditions. In particular,
an important physical input was the ‘recirculation bubble’
behind the dune. This bubble makes the dune effectively
look larger to the wind, and, due to the non local term
in the relation between the saturated flux and the dune
profile, has a stabilizing role. In fact, very little is known
and well established about this recirculation bubble, but
most of the dune features (position of the slip face, cut-
off size, etc.) precisely depend on fine interactions and
feedbacks between the dune and the bubble. More studies
on this point are needed.
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Another central result of the paper is the existence of
a cut-off scale, below which no dune solution exits. It cor-
responds to the dune for which the steepest slope is equal
to the critical value —pup needed to make the bubble ap-
pear. Not surprisingly, this scale is of order of ls,¢. This
result then rises the question of dune initiation and forma-
tion. The two scenari usually proposed by geophysicists for
the formation of dunes are the following: first possibility,
a small bump (of the size of ripples) grows continuously
and forms a dune; second one, the sand accumulates on
a solid obstacle like a rock or a bush and, when the size
of the accumulation becomes larger than the obstacle, a
dune forms and starts propagating downwind. However,
observations show that ripples are stable and no struc-
tures between dunes and ripples can be seen. Similarly,
rocks and bushes create lee dunes of the size of the obsta-
cle but which remain anchored to the obstacle. An alterna-
tive explanation can be proposed, following the results of
the stability analysis of the equations of the model, as well
as that of the dome solutions. We found that large wave-
lengths perturbations get amplified, and that the dome
profiles, selected by their incident flux qg, are unstable to
changes of that flux. Then, a possibility is that first domes
form with a small height but directly with large length
and width, and second that these domes, by this flux in-
stability, progressively become more and more compact,
and eventually reach the point where their slope is steep
enough to generate a bubble and create an avalanche slip
face to become an actual dune.

Several extensions to the present work can be thought
of. First, we would like to go beyond the calculation of
purely propagative solutions, and study the full dynam-
ics of a given dune profile. In particular, as just said, an
important point is the evolution of the dome solutions
when submitted to incident sand flux variations. A second
point is to go from a 2d description — transverse dunes —
to real three dimensional situations. The idea is to ‘cut a
barchan into longitudinal 2d slices’. As a matter of fact,
a barchan slice close to the center of the dune looks like
our dune solution, while a slice made at the edges where
the horns are present rather have a dome shape. Suppose
these slices are completely decoupled. Because the small
ones go faster than the large ones, an initial conical sand-
pile will soon get a crescentic shape. However, when equi-
librium is reached, all the slices should move at the same
velocity. There should thus be a coupling between them,
namely a lateral sand flux from the centre towards the
horns. When the flux is saturated at the crest the veloc-
ity at the crest is ¢ = (gsat — qo)/H. This suggests than
an equilibrium can indeed be achieved if q¢ increases in
the small slices. Eventually the 3d dune slip face will be
the sum of the contributions of all 2d slices whose brinks
depend on their heights. Note that this scenario is con-
sistent with the field observation that barchan horns are
more elongated at strong winds which make the lateral
sand flux less important, and consequently slices less cou-
pled.

Finally, quantitative comparisons between experimen-
tal dune profiles and our theoretical predictions will be
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performed. This idea is to use barchan longitudinal slices
as that shown in Figure 7, but also sand structures un-
der water, such as those obtained by Betat et al. [10] or
Andersen et al. [11] for which, in principle, this model
should be also valid.

We are grateful to G. Sauermann and K. Kroy for precise expla-
nations of all the details of their modelling. The measurements
of the dune profiles (Fig. 7) were performed by B. Andreotti,
S. Douady, P. Hersen and L. Quartier. P.C. wish to thank C.
Kriille and B. Murray for useful discussions. This work bene-
fited from the ‘Action Concertée Inicitative Jeunes Chercheurs’
of the French Ministry of Research.

Appendix: the low flux dome solution

How can we construct a dome solution for gy < ¢j? Sup-
pose the values of the velocity ¢ and the length D are
given, from equation (20) we can compute h and its deriva-
tives as well as gsq¢. Because qp is smaller than gf, gsqr will
reach zero at some position x = L < D. Negative values
of gsq: are not permitted, and we therefore set it to zero
for & > L. Then, equation (16) is very easy to integrate
and gives and exponential branch for the flux ¢(z), which,
using the linear relation (18) between ¢ and h leads to:

hr(x) = % |:(CH7’ + qO)ei(IiL) - q0i| . (A].)

The subscript r is used to avoid any confusion with
h(z) given by equation (20), but both are part of the
same smooth dome solution. Now, if one compute what
would be the saturated flux ¢,, calculated from the pro-
file h, with the relation (17), one sees that it is nega-
tive as it should be close to = L (remember that gsu:
is set to zero), but crosses zero at some other position
x =L+ R < D. From that point and for larger « we thus
need to come back to the original profile h. Then, a natural
way to end up the dome profile is to use

hy(z) = h(D — x), (A.2)
which is consistent if gsqt(—Y) =0, with L+ R+Y = D.
This choice ensures that both h(D) and h'(D) vanish as
required. These three regions of the dome solution are
illustrated in Figure 16.

Let us now be more explicit about the continuity
conditions at the two matching points. At x = L, by
construction of the relation (A.1), the dome profile, the
sand flux, and the saturated flux are continuous. Because
equation (16) holds everywhere, it implies that d,q, and
therefore the slope A’ are also continuous. By contrast, the
curvatures h”(L) and h!/(L) are different, and therefore
gt (L) # qsat(L) = 0. The position z = L + R is defined
by ¢%.;(L + R) = gsat(—Y) = 0. At this point of course
we do not want any step in the dome profile, such that
H, = hy(L + R) and h,(L + R) must be equal. Again,
because of equation (16) and the fact that gsq: has been
built to be continuous at = L + R, the continuity of the
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Fig. 16. Top: Profile of a dome. Bottom: Slope, curvature and
saturated flux in the same conditions. H is the dome height.
As qo < qp, its length D must be cut into three regions of size
L, R and Y. The saturated flux gsq¢ is strictly zero between
x = L and x = L+ R and the profile is a branch of exponential
which matches with the two parts of the full solution. H, and
H, are the heights at the two sides of this central region. At
2 = L the curvature h”’ shows a discontinuity, but all quantities
are continuous at x = L + R. With the sand supply chosen
(go = 0.09), the dome steepest slope just reaches its minimum
permitted value —up at x = L.

profile makes the slope continuous too. However this posi-
tion is also the point where the pseudo saturated flux ¢,
crosses zero, such that the curvature of the dome profile
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is also continuous. All these continuity conditions can be
shown in Figure 16.

To sum up, we have in practice four coefficients to de-
termine: ¢, L, Rand Y (D = L+ R+ Y) with the four
non-linear following equations: gsqt(L) = 0, gsat(—Y) = 0,
hr(L+R) = h(-Y) and ¢, (L + R) = 0. These equations
can then be solved numerically. One can find such a so-
lution for any gy < g but it is valid only if its steepest
slope is larger than — . This fixes a lower bound ¢f§ under
which there is no consistent solution. With a =1, g =4
and pp, = 0.25, ¢§ ~ 0.09, flux for which the dome is shown
in Figure 16.
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